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The  influence  of social  networks  on  the  development  of  obesity  has  been  demonstrated,  and  several  mod-
els have  been  proposed.  However,  these  models  are  limited  since  they  consider  obesity  as  a  ‘contagious’
phenomenon  that can  be caught  if most  social  contacts  are  deemed  obese.  Furthermore,  social  networks
were proposed  as  a  means  to mitigate  the  obesity  epidemic,  but  the  interaction  of  social  networks  with
environmental  factors  could  not  yet  be explored  as  it  was  not  accounted  for  in  the  current  models.  We
propose  a new  model  of  obesity  to face  these  limitations.  In  our model,  individuals  influence  each  other
with  respect  to food  intake  and  physical  activity,  which  may  lead  to changes  depending  on  the  envi-
ronment,  and  will impact  energy  balance  and  weight.  We  illustrate  the  potential  of  our  model  via two
questions:  could  we  focus  on social  networks  and  neglect  environmental  sources  of  influence,  at  least
from  a modelling  viewpoint?  Are  some  social  structures  less  prone  to be  influenced  by  their  environ-

ment?  We  performed  a factorial  analysis  based  on both  synthetic  and  real-world  social  networks,  and
found that  the  environment  was  a key  component  behind  changes  in  weight  but  its contribution  was
mitigated  by  structural  properties  of the  population.  Furthermore,  the contribution  of  the environment
was  not  dictated  by macro-level  properties  (small-world  and  scale-free),  which  suggests  that  particular
patterns  of social  ties  at the  micro-level  are  involved  in  making  populations  more  resilient  to  change  and
less influenced  by the  environment.
. Introduction

Increasing evidence has shown that the health of individuals is
onnected [38], which can be intuitively understood as friends who
hare activities such as dieting or exercising will also share a part
f their health outcome. This was illustrated in a recent review by
ammond who found social influence to be a significant factor in
besity [33]. This review concluded that we need to better under-
tand the interplay of social influences with other factors driving
besity, and that computational simulation represent “one espe-
ially promising approach” to help foster our understanding. In
his paper, we propose a computational model to investigate the

nterplay of social and environmental influences.

Several computational models have been proposed to under-
tand the role of social influence in obesity [4,35].  However, they
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only took a simplistic approach by considering that individuals
directly spread their weight (e.g., if one person has a majority of
obese friends then he would simply turn obese). In this paper, we
propose a new model of obesity, motivated by the fact that obe-
sity results from a long-term imbalance between physical activity
and food intake, and that these two factors are influenced by peers
[8,11,22,39]. In our model, individuals are not directly acting on
others’ weights but rather influencing social norms regarding food
and physical activity, which contribute to changes in weight. Fur-
thermore, our model accounts for the fact that one is not only
influenced by peers when making a decision about an activity such
as exercising: the environment shapes the possible choices. This
includes the physical (built) environment, which may  limit the offer
of places to exercise, and the norms conveyed by the media which
contribute to decision making.

Bahr et al. concluded from their model that traditional interven-
tions may  fail because they do not take into account the impact of
social networks [4].  This raises questions: could we focus on social
networks and neglect environmental sources of influence, at least

from a modelling viewpoint? Are some social structures less prone
to be influenced by their environment? We  illustrate the potential
of our model by using it to investigate these questions, both for
synthetic populations and a real-world population.
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ig. 1. Core model relationships. Social network and environmental factors are mo
s  the sum of the thermic effect of food, resting energy expenditure, and the level o

hich  in turn determines body weight.

.1. Contribution of the paper

The principal contributions of the present work can be summa-
ized as follows:

We  developed a model of obesity that accounts for social and
environmental influences on food and physical activity, instead
of a majority vote directly determining obesity as in previous
models.
We  applied the model to investigate the relative contributions
of social and environmental influences on the obesity epidemic,
both for synthetic populations generated using known features
of social networks (small-world and scale-free) and a real-world
network.
Our results suggest that the environment cannot be neglected,
but its importance depends on the connections between individ-
uals. In other words, the social ties of friendship are structured in
different ways across populations, and these structures affect the
sensitivity of a population to its environment. Some populations
can be more cohesive, leading to a lower change on weight and
being less prone to change based on the environment. The cohe-
siveness of a population is not a simple function of its high-level
properties but may  depend on structural features that remain to
be investigated.

.2. Organization of the paper

In Section 2, we focus on the processes unfolding on social net-
orks: how individuals influence each other regarding food and
hysical activity. The principles of our model are first introduced

ntuitively, and then the mathematical specification is developed.
n Section 3, we turn to using this process on social networks,
oth synthetically generated and extracted from a real-world
ociological study. The motivating question is to investigate the
ontributions of social and environmental influences to obesity,
hat is, by monitoring changes on average weight. For both cases,
e derive from a literature review representative values for initial
eight, and we use previous research to assign values for initial
hysical activity. In synthetic populations, we explain how indi-
iduals are connected, and we detail the procedure that assigns
eaningful values to the model’s parameters in order to perform
 factorial design (i.e., identify the contribution of different influ-
nces). The same design is applied to a real-world population, and
e compare the contribution of social and environmental influ-

nces in these different settings. Finally, we discuss the limitations
 as influencing energy intake and the level of physical activity. Energy expenditure
sical activity. Energy intake and energy expenditure determine the energy balance

of this model, due in part to gaps in our current understanding of
obesity.

2. Model

2.1. Informal description

At the level of the individual, we explicitly model the main
components of metabolism, as shown in Fig. 1. Whether an individ-
ual gains or loses weight depends on the balance between energy
intake (EI) and energy expenditure (EE). When this balance (EI–EE)
is positive, the energy surplus leads to an increase in body weight
(BW). Similarly, if the balance is negative, then there is a loss in body
weight. Energy expenditure is modeled as a function of three com-
ponents: an individual’s level of physical activity (PA), his resting
energy expenditure (REE) and the thermic effect of food (TEF). REE is
a function of the percentage of lean and fat mass which we  approx-
imated as a fixed percentage of body weight. TEF was assumed to
be 10% of EI [14] and PA contributes to the calculation of energy
expenditure as a multiplier of resting energy expenditure.

Both EI and PA in an individual are influenced by a combination
of social network and environmental factors. The social network
influence on an individual’s physical activity or energy intake is the
sum of the difference between the individual and each of his friends,
normalized by the total number of friends. The social network
influence is then combined with the influence of the environment,
and if the resulting influence is sufficient (i.e.,  above a set thresh-
old), then an impact is exerted upon the individual (Fig. 2). The
mechanism of a threshold and a corresponding impact models a
simple decision-making process. If the model of an individual’s
action was  to also include beliefs and previous experience, then
an agent-based framework should be employed in lieu of the net-
work framework used here. However, data may  be currently too
limited to allow for a richer decision-making process, as outlined
in the Discussion. The mechanism proposed here aims at capturing
a broad array of situations found in real-life, as exemplified in the
following case.

If an individual who  is not physically active is surrounded by
active friends, then the influence of his social network will be great.
If the individual also lives in an environment that promotes phys-
ical activity, then the combined influence of the individual’s social

network and environment is likely sufficient to trigger an impact
on physical activity. However, the environment may  also inhibit
physical activity in which case the threshold may not been reached
and the individual’s level of physical activity remains unchanged.
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Fig. 2. Details of the social network and environmental influences on physical activity. All individuals in the model are considered to be in the same environment. The
influence of one’s social network is combined with the effects of the environment. The combined influence is compared to the threshold for a change in physical activity to
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changing behaviour as the number of their friends increase, even
with very small behavioural differences between an individual
and his friends. Thus, the total influence received from friends on

Table 1
Notation.

Symbol Meaning

EI Energy intake (MJ/d)
PA Physical activity level (dimensionless)
I Impact on physical activity (dimensionless)
etermine if there is an impact on physical activity and the direction of that impact
ashion.

f a change in physical activity is triggered, then the individual’s
hysical activity is changed by a fixed percent of his prior level.

.2. Mathematical specification

.2.1. Calculation of energy expenditure and energy intake
The energy expenditure of an individual i at time t, denoted

Ei(t), involves three components. Firstly, the resting energy expen-
iture REEi(t), also called ‘resting’ or ‘basal’ metabolic rate, sustains
he basic functions of the body. Secondly, the effect of physical
ctivity PAi(t) is the energy used for muscular work and is calcu-
ated as a multiplier of REEi(t). Thirdly, the thermic effect of food
EFi(t), also called ‘meal-induced thermogensis’, is the energy used
o process food intake. In the following, we use a simplified nota-
ion for the equations in which the individual i and the time t are
mitted but apply to all variables.

To calculate resting energy expenditure, we  use an empirical
xpression by Westerterp and colleagues based on multiple regres-
ion analysis over combined studies on adult healthy subjects [41].
his expression is provided as a function of lean body mass (LM)
nd fat mass (FM) [1,41]:

EE(MJ/d) = (0.102 × LM) + (0.024 × FM) + 0.85 (1)

Although lean and fat mass vary as a function of the body weight
W, we have used an approximation of fat mass as 25% of BW which

s intermediate between 28% [26] and 21.5% [13]. This allows us to
implify the calculation of REE to:

EE(MJ/d) = (0.102 × 0.75 × BW) + (0.024 × 0.25 × BW) + 0.85(2

ence

(3)

Although the thermic effect of food TEFi(t) depends on dietary
omposition, it is commonly approximated as 10% of the total
aloric intake [14]. Thus total energy expenditure EE is calculated
s:

(4)

We consider that all individuals are initially in an equilibrium
tate, i.e.,  they are not currently gaining or losing weight. In other
ords, before applying any socio-environmental factor, we con-
ider that an individual is at steady state, therefore EIi = EEi for all
ndividuals i. By replacing EE with the formula above, we obtain EI:

I(MJ/d) = PA × (0.083 × BW + 0.85) + 0.1 × EI (5)
l network and environmental influences on energy intake are modeled in a similar

thus

(6)

Initially, a value of PA and BW is assigned to all individuals
(as will be detailed in Section 3.1). These values are combined
to obtain the energy expenditure, which is then used to set the
energy intake. Our formulas for the energy intake resulted in val-
ues from 6.3 MJ/d to 21.25 MJ/d, which is considered to be realistic
[21].

2.2.2. Socio-environmental influences and their impact on the
individual

The notation that we introduce for socio-environmental factors
is summarized in Table 1. The impact of external influences on
EIi(t) and PAi(t) is modeled in a 3 step process: we first compute
the total influence exerted on an individual by his friends, then
we combine this influence with the environment, and a change
happens when the value is beyond a given threshold (Fig. 2). We
start by computing the influence exerted on an individual i at
time t by his friends, with respect to physical activity PAi(t) and
energy intake EIi(t). We denote the set of all friends of i by Fi,
and the number of friends of i by |Fi|. The influence is computed
as the sum of the differences between the individual’s feature
and each of his friends at time t − 1, weighted by the total num-
ber of friends. The weight is used to account for the fact that
the influence is the result of the trend amongst friends, which is
independent of the number of friends. In the absence of this weight-
ing mechanism, individuals would become increasingly prone to
PA

IEI Impact on energy intake (MJ/d)
Env Environmental social influences (dimensionless)
TEI Threshold for change on energy intake (dimensionless)
TPA Threshold for change on physical activity (dimensionless)
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Fig. 3. The curves from Hall [20] were fitted with our interpolation, in bold and grey,
for  a scenario taking into account non-linear effects. The scenario that does not take
0 P.J. Giabbanelli et al. / Journal o

hysical activity and energy intake is given by the following equa-
ion:

Inf PAi(t) = 1
|Fi|

×
∑
j∈Fi

(PAj(t − 1) − PAi(t − 1))

Inf EIi(t) = 1
|Fi|

×
∑
j∈Fi

(EIj(t − 1) − EIi(t − 1))

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(7)

As we are interested in both social and environmental influences
n i, we use a parameter Env to represent constant environmen-
al influences from sources such as advertising, education, and the
uilt environment. When Inf PAi

is positive, then the individual is
ncreasing his level of physical activity. Thus, a beneficial envi-
onment (Env) will further increase Inf PAi

. On the other hand, a
armful environment will reduce the increase. To represent these
wo possible effects of the environment, we set it to be harmful
hen 0 < Env < 1, and beneficial when 1 < Env < 2. Thus, when Inf PAi

s positive, the environment multiplies it. Similarly, when Inf PAi
s negative, a harmful environment increases the result whereas

 beneficial environment decreases it. This is summarized by the
ollowing:

if Inf PAi(t) ≥ 0, then Inf PAi(t),Env = Env × Inf PAi(t)

if Inf PAi(t) < 0, then Inf PAi(t),Env =
Inf PAi(t)

Env

}
(8)

The effect on the energy intake is the opposite, since positive val-
es of the influence on energy intake are harmful instead of helpful
s in the case of increased physical activity. Thus, the equations
overning energy intake are:

if Inf EIi(t) ≥ 0, then Inf EIi(t),Env =
Inf EIi(t)

Env
if Inf EIi(t) < 0, then Inf EIi(t),Env = Env × Inf EIi(t)

}
(9)

If the socio-environmental influence on physical activity
Inf PAi(t),Env) or energy intake (Inf EIi(t),Env) is higher than a given
hreshold, then the corresponding value increases for the indi-
idual considered. If the influence is lower than the threshold,
hen the corresponding value decreases. The thresholds on energy
xpenditure and physical activity are denoted by TEI > 0 and TPA > 0,
espectively. Similarly, the changes on energy expenditure and
hysical activity are denoted by IEI > 0 and IPA > 0, respectively.
aking energy intake as the example, the final equation for the
ocio-environmental impact and the possible changes in one unit
f time is

if Inf EIi (t),Env ≥ TEI × EIi(t − 1),  then EIi(t) = EIi(t − 1) + IEI × EIi(t − 1)
if  Inf EIi (t),Env < TEI × EIi(t − 1),  then EIi(t) = EIi(t − 1) − IEI × EIi(t − 1)

}
(10)

The equation regarding physical activity is the same, using the
hreshold TPA and impact IPA. Note that these thresholds are inde-
endent of the individual or time: they remain the same and hold
or the overall populations.

.2.3. Transforming energy into weight
Once an individual i has been influenced, we compute his cur-

ent energy surplus �i(t) by

i(t) = EIi(t) − EEi(t) (11)

There are several approaches to turn the energy surplus into
eight. Two are considered in this paper, based on models from

10,20,41]. In a first scenario (A), we consider a fixed energy den-
ity of 32.2 MJ/kg. In other words, if �i(t) = 32.2 then the individual
ains one kilo. This scenario is a suitable approximation for indi-

iduals having an initial body fat above 30 kg, but not for other
ndividuals [20]. Furthermore, this scenario can lead to a large
ver-approximation. For example, eating 12 extra grams of but-
er per day results in a surplus of 0.4 MJ  (or 100 kcal), for which
into  account the initial fat mass is a constant.

the scenario would predict an increase of 5.5 kg in a year. To
provide more realistic predictions, a second scenario (B) consid-
ers non-linear effects. Indeed, it is known that the energy deficit
required per unit weight loss grows with the initial body fat:
obese individuals require a greater deficit in energy to lose the
same amount of weight as lean individuals. As shown in Fig. 3,
we fitted the typical curves from [20] by considering that los-
ing 1 kg for an individual having an initial body fat x requires
f(x) = 7 × ln (x + 1) + 5 MJ.  For example, an individual with 30 kg of
body fat requires 29.03 MJ  per kilo, whereas an individual with
15 kg of body fat requires 24.40 MJ  per kilo. The results shown
in this paper are based on experiments conducted for scenario
(A). Scenario (B) did not result in a statistically significant differ-
ence.

3. Applications

3.1. Initial values

Initially, each individual is assigned a weight drawn from a nor-
mal  distribution. To estimate the parameters of the distribution,
we conducted a review of the demographic characteristics found in
several cohorts, summarized in Table 2. We used the mean weight
of 77.1 kg and the standard deviation of 15.675 kg from the Heritage
Family study [26] because this was representative of the studies
examined [13,21,32,41]. We also allowed for the broadest possible
range of body weights of 38 kg up to 215 kg [41]. Randomly gen-
erated weights outside this range were discarded and new weight
was generated.

Similarly, the level of daily physical activity (PA) is drawn from
a normal distribution. The mean value is set at 1.53, which repre-
sents the level for a sedentary individual [15]. We  used a standard
deviation of 0.1 to reflect the fact that most people are sedentary
[7].  As with body weight we  allowed for a broader range of physi-
cal activity (1.4–4.7) based on data from the Food and Agriculture
Organization [15].

Once an individual has been assigned a weight and a level of
physical activity, energy expenditure is computed. Then, energy

intake is set equal to energy expenditure in order for the individual
to be initially at equilibrium.
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Table 2
Literature review to provide initial conditions. When a cohort was  divided into sub-populations, either by sex or by race, the mean and standard deviation reported in the
table  were obtained by a weighted average across sub-populations. The reported range was obtained by taking the combining the ranges given for each sub-population.

Feature Stat. type Values by reference

[21] [26] [41] [13] [32]

Weight (kg) Range [38,215] [63.9,103.4]
Mean 77.1 71 81.5 77.4
Std  15.675 20 10.29 17.8

Body  Fat Range See note.a [2,128]kg [9.8,43.3]%
Mean 28% 19kg 21.5% 25.05kg
Std  8.75% 14.5kg 7.35% 9.9kg

Energy intake (MJ/d) Range [4.09,22.10] [10.89,16.75] [2.96,18.26]
Mean 8.02 13.19 8.668
Std 2.32 1.76 2.32

Age  Range [30,59] [17,65] [19,95] [27,65] [18,55]
Study  origin Country US (Louisiana) US and Canadab Netherlands US (Beltsville) Canada

Year  ’99–’02 ’02 ’93 ’02 ’04–’06

a While there was no information about weight, the BMI  indicated that 40% of the sample was obese, and this higher than normal result may  come from a mean age of 48
years.
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Arizona, Indiana, Minnesota, Quebec, Texas.

.2. Theoretical networks

.2.1. Calibrating networks
The set of social actors (i.e., individuals) and the links between

hem represents a social network. Determining an appropriate
tructure consists of deciding how individuals are connected. We
onsider that the social network always expresses the small-world
roperty [36]. Informally, this property requires (1) that individuals
ften belong to communities, and (2) that going from one commu-
ity to the other requires a small set of intermediate individuals
17]. Formally, the first requirement states that if an individual a is
inked with b and b is linked to c, then a is also connected to c with
igh probability. To define formally the second requirement, let us
enote by A the set of all social actors, N the number of actors, and
ist(u, v) the distance between two actors u and v (i.e., the mini-
al  number of links to follow to go from one actor to the other).

hen, the second requirement, known as a logarithmic average dis-
ance, corresponds to having an average distance in the order of the
ogarithm of the number of actors:∑

u∈A

∑
v∈Adist(u, v)

N(N − 1)
∝ ln(N) (12)

As the small-world property is often found in social networks,
e assume that these two requirements always hold in our pop-
lation. We  also considered the scale-free property, which states
hat many individuals are linked to a few and a few are linked to

any. This formally translates to having the distribution p(x) of the
ercentage of individuals with x friends following a power-law:

(x) = ec × x−˛ (13)

We considered that, while the small-world property always
olds, the scale-free property may  or may  not be present [17]. This
esulted in using two network models. To represent a social net-
ork being only small-world, we use the model GP [17] (detailed in

ig. 4), and for a social network that is both small-world and scale-
ree we use the model H [5].  Since simulations were performed on
oth networks, they had to be comparable: they must be of similar
ize (i.e., number of actors), and similar average number of friends
er individual. Using the notation from [17], we  use the instance
Pn=185,ı=11 with 2405 individuals and 11.02 friends on average,

nd the instance Hn=7,t=4 with 2401 individuals and 11.57 friends
n average. Both instances satisfy the small-world property. The
rst requirement, stating that the average distance should be in
he order of the logarithm of the number of actors, is verified since
we have 9.10 in GPn=185,ı=11, 3 in Hn=7,t=4, and ln (2400) ≈ 7.78. We
also took the additional care of having the same probability (89%)
for the second requirement (i.e., a clustering coefficient of 0.89).
The distributions of clustering are shown in Fig. 5, while the insets
represent the distributions of distances.

These network models and the mathematical specification
described in the previous Section were implemented in Java for a
platform dedicated to the study of networks, tested in several other
projects [18,19].

3.2.2. Calibrating the socio-environmental process
The goal of our analysis was to identify the contribution of social

and environmental influences to the average change in weight of a
population. The environmental influence was modeled as a single
factor (Env), while social influences were further detailed into five
factors: the quantity of influence required to trigger an impact on
physical activity (TPA) or energy intake (TEI), the associated impacts
on physical activity (IPA) or energy intake (IEI), and whether the
population has a scale-free structure. In order to analyze the con-
tribution of several factors, we  used a factorial analysis [27]. In a
factorial analysis, each experiment consists of a combination of val-
ues for all factors and all combinations must be tested. As we  have 6
factors, if each of them can take k values then k6 experiments should
be performed, and possibly more due to replications. In order to
keep the number of experiments feasible, we used a binary factorial
design where each factor takes one high and one low value resulting
in 26 = 64 experiments. Each experiment is replicated four times, in
order to account for variability due to different initial assignments
of weight and physical activity.

Calibrating our model of socio-environmental process becomes
a task of assigning meaningful high and low values for each factor.
The values that were used in the factorial design are summarized
in Table 3 and explained in the remainder of this section.

The high value for energy intake (IEI,high = 20%) was  based on the
literature on social facilitation of eating [8,11,24]. Studies which
compared eating with friends to eating alone observed an increase
in calorie intake ranging from 11 to 96% [6,11,24,9,29],  and most
studies suggest an increase of 40–50% [23]. We  hypothesized that
individuals are initially at equilibrium. Thus, they cannot be con-
sidered to be in one of the two extreme states (eating alone or

eating with friends) and they are conceptually in an intermediate
state which we  took to be midway between 0 (alone) and 50% (with
friends), i.e.,  25%. A high value of 50% is the same as 20% greater than
the equilibrium value of 25% (for a variable x, 1.5x = 1.2 × 1.25x),
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Fig. 4. A well-known small-world model is the Watts–Strogatz [40]. This model starts from a lattice of small dimension (a), for example in which each node i  is connected to
nodes  i ± 1, i ± 2, · · ·, i ± �

2 ; in (a), � = 4. Then, the ‘signature’ process of Watts–Strogatz rewires the endpoint of an edge with a small probability p (b). The model by Comellas,
Ozon  and Peters [12] uses the same base (a) but selects h equidistant nodes (c; in blue) and connects them using a double step graph; (c) shows the first step and (d) the
second  for a double step graph C(6,1,2). This model has higher clustering coefficient and lower average distance than Watts–Strogatz. The model GP further improves these
values  by considering that the base (a) has a good coverage of short-range links but that medium- and long-range links are not well represented by either Watts–Strogatz or
COP  [17]. Thus it connects each node i to i ± 20, · · · , i ± 2k as long as d(i) /= � (e; blue links). Then, it explicitely creates communities by adding a complete graph K� to each
node  and rewiring one end to another complete graph (f; yellow link). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version  of the article.)

Fig. 5. Distributions of clustering and distances (insets) for GPn=185,ı=11 (left) and Hn=7,t=4 (right).

Table 3
High and low values used for each parameter in the factorial design.

Variable Impact on physical
activity (IPA)

Impact on energy
intake (IEI)

Threshold on physical
activity (TPA)

Threshold on energy
intake (TEI)

Environmental
influence (Env)

Low value 5% 5% 6% 6% 0.93
High  value 20% 20% 6.5% 6.5% 1.02
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Table 4
Selected experimental studies on social facilitation.

References of experimental studies

[24] [9] [11] [29] [6]

Alone (kcal) 3861 kcal 435 kcal 375 kcal 742 kcal 1259 kcal
With  friends (kcal) 4565 kcal 685 kcal 703 kcal 828 kcal 2469 kcal
Setting  Observed Self-reported Observed Observeda Observed
Place United-Kingdom US Canada US US
Cohort age 28.3 ± 1.8 41.9 ± 13.7 21.9 ± 4
Male/female 21/16 276/239 0/120 294/245 65/61
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they held for larger networks such as H5,4 with 625 individuals,
H6,4 with 1296 individuals, and H8,4 with 4096 individu-
als.
Subjects were observed in 7 formal dining and 7 fast-food types of Fargo. No sig

herefore the highest impact on energy intake used in the factorial
esign was 20%. The high value for physical activity was  also set at
0% (IPA,high = 20%). We  set the low value for the impact on energy

ntake and physical activity at 5%, one order of magnitude lower
han the high value (5% = 0.1 × 50%) (Table 4).

No literature can currently inform our estimates for the thresh-
ld values of energy intake and physical activity (TEI and TPA).
n other words, no sociological study was yet performed which

ould quantify in our model how much ‘influence’ someone needs
o receive in order to change. Thus, we performed a simulation
nalysis to determine the parameter values that would give real-
stic changes in body weight. We  simulated the average change in

eight in the population by varying TPA and TEI together for all four
ombinations of IPA and IEI over 700 time steps, where a time step
quals one day (Fig. 6). Social influences were exerted once per
eek to account for limited time devoted to social activities. Simu-

ation results were compared to the changes in weight observed in
he National Longitudinal Survey of Youth (NLSY79). This data set
ontains a nationally representative sample of 12,686 young men
nd women who reported their weight biennially from 1986 to
004. The largest change between two successive reports was 3.6%,
or women from 1990 to 1992. We  selected TPA,low = TEI,low = 6, and
PA,high = TEI,high = 6.5 as they resulted in stable and realistic (<3.6%)
hanges in body weight. In a population that is both small-world
nd scale-free, we observed changes in average weight between
2.42 to 0% with a low threshold, and between −0.71 to −0.07%
ith a high threshold. If the population is only small-world, then

he change ranges from −2.40 to 0.57% with a low threshold, and
0.69 to −0.11% with a high threshold. These values are consistent
ith the National Longitudinal Survey of Youth (NLSY79).

The behaviour of our system illustrated in Fig. 6 may, at first,
eem surprising. However, it is theoretically common: this is a
istable system, depicting a very large unrealistic change fol-

owed by a transition that yields a small (realistic) change.1 Such
ehaviour is common to a wide variety of systems, such as phys-

cal (water turning from ice to liquid at the tipping point of 0 ◦C)
ut more importantly cultural. For example, it was observed in a
odel representing individuals having independent cultural fea-

ures, in which the connection between two individuals was  more
ikely to be active if they shared more cultural features [28]. In our
ase, one suggested pratical explanation would be in analogy with
oise: most influences are small, i.e.,  there is a lot of small ‘noises’.
he threshold acts like a filter on noise: if it is set too low then
he noises will distort the signal such that it produces unrealistic

hanges on average weight. However, there is a critical threshold
t which most small noises are eliminated, leaving out the more

1 This happens directly when varying the control parameters TPA and TEI making
his a first-order transition between the two states.
nt differences were found within restaurants of the same setting.

realistically convincing influences, and leading to less fluctuation
in the average weight.

We  also confirmed that the behaviour of the system and the
choice of threshold values does not depend on the size of the
network. In other words, thresholds were scale-independent, as
Fig. 6. Change on average weight for all combinations of impacts on physical activity
and energy intake in a small-world network (a), and in a small-world and scale-free
network (b). Data points in (a) are surrounded by max. and min. values. Two simula-
tions are displayed for (b) due to a sharp transition. Realistic changes as determined
from the NLSY79 dataset are given by values of TPA and TEI from 5.65 to 6.75.
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Table 5
Contribution of factors to the change in average weight.

Environment Topology Social factors

IEI IPA TEI TPA

Environment 33.1 9.2 5.8 7.0 0.9 2.5
Topology .4 2.2 4.5 .8 1.6
IEI 4.8 .0 2.8 .0
IPA 6.1 .0 3.4
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ever, the changes predicted by this real-world population were
all within a realistic range, compared to the synthetic popula-
tions which had one unrealistic phase (up to a 40% increase on
TEI 2.9 0.0
TPA 3.3

Finally, simulations were also used to identify the low and
igh values for the environment factor (Env). Calibration of the
nvironment factor was based on the error rate for the factorial
nalysis for all combinations of the five other factors (thresholds,
mpacts, population topology) and for various values of Env. We
elected the error rate that minimizes the sensitivity to initial con-
itions. For example, Envlow = 0.97 and Envhigh = 1.02 results in an
rror of 18.43% in the factorial analysis, thus results would be
ighly sensitive to initial conditions and little could be concluded
egarding the interplay of parameters. By selecting Envlow = 0.93
nd Envhigh = 1.02, we have an error rate of 8.7%. This small error
ate allows for a comparison between the order of magnitudes of
arameters.

.2.3. Simulation results
We  developed a mathematical model in which the food and

hysical activity behaviours of individuals are influenced by their
eers. In this section, we focussed on designing a binary facto-
ial design to investigate the contribution of socio-environmental
eatures to the change in average weight of a synthetic popula-
ion. Results are presented in Table 5. The diagonal shows, in bold,
he contribution of single factors (known as primary effects). For
nstance, the table indicates that 6.1% of the change in weight is
aused by how much individuals change their physical activity
IPA). Cells above the diagonal provide the contribution of inter-
cting factors, also known as secondary effects. A secondary effect
s the contribution of two factors taken together, where one is
iven in the column heading and the other in the row heading.
or example, the table shows that the contribution of the topology
nteracting with the impact of energy intake (IEI) on weight change
s 2.2%.

In synthetic networks, the environment plays a role as impor-
ant as social factors. Alone, the environment explains one third
f the change in average weight (33.1%), and an additional quarter
25.4%) through interactions (first line of Table 5) with factors such
s the network topology (9.2%) and the changes in food and physical
ctivity behaviours (sum of remaining interactions = 16.2%). Social
actors, such as the threshold necessary to trigger a behavioural
hange (TPA, TEI) and the corresponding impact (IPA, IEI), explain less
hange by themselves (17.1%) but contribute to an additional third
hrough interactions (31.5%). How individuals are connected (i.e.,
he network topology) does not contribute in a statistically signifi-
ant manner by itself (0.4%). Although it has a significant interaction
ith other factors (18.3%), half of it is due to the interplay with the

nvironment (9.2%). These results suggest that, in the synthetic net-
orks considered, social and environmental factors are of similar

rder of magnitude in explaining changes in weight of a population
ver time.

.3. A real-world case
In the previous section, our simulations based on synthetic
etworks found that (i) the system is bistable with a sharp tran-
ition, and (ii) the environment impacts changes on weight to
Fig. 7. A sharp transition is witnessed on the student network for IPA = 20 and IEI = 5.

a similar extent as social factors. Was  the bistability an artefact
of the synthetic populations we  generated, or is it a feature of
our system? Is the impact of the environment similar in real-
world populations or could different social structures mitigate
it? To investigate these questions, we  applied the same process
on a real-world social network. In this network, the nodes are
students from the University of California, and they are con-
nected based on messages exchanged from April to October 2004.
While the original network weights the connections by the num-
ber of messages or characters exchanged, our process assumes
unweighted edges thus we considered whether a message was
exchanged. This network was  studied in Opsahl’s PhD thesis [30]
and is further described in [31]. This network has 1893 nodes,
13835 edges, an average distance of 3.055, and a clustering coef-
ficient of 0.0568 [31]. The network is available online.2 In the
following, we  will refer to this network as the ‘student net-
work’.

In the previous section, we determined the impacts on phys-
ical activity and diet from the literature. Due to a lack of data,
the value of the thresholds on physical activity and diet as
well as the environment were determined such that the pop-
ulation’s average weight varies within a realistic range per the
NLSY79 dataset and simulation errors are small. Thus, the values
of thresholds and the environment are set for a given popula-
tion and should not be seen as universal values holding in any
populations. These values produced realistic changes in both the
small-world/scale-free and purely small-world networks, but they
may  not yield satisfactory results in other networks. This was illus-
trated for the student network by performing a factorial design
with replication, as in the previous Section. We  used the same
values for the thresholds on diet and physical activity, impacts
on diet and physical activity, and environment. For each combi-
nation of values, the simulation was  carried on 4 times, leading
to 25 × 4 = 128 experiments. The final error was 54,71%, which
demonstrates that these values are not meaningful for the student
network.

Therefore, the student network had to undergo the same cal-
ibration process as in the previous section. When calibrating the
thresholds’ values, we noticed that the system was still bistable,
as illustrated in Fig. 7 for one combination of values. How-
2 http://toreopsahl.com/datasets/

http://toreopsahl.com/datasets/
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verage weight) followed by a realistic phase. Thus, this popu-
ation appears to be more resistant against strong changes. As
epresentative values for the thresholds, we selected 4.5 and 5.5
hich results in changes different by one order of magnitude

2.8% versus 0.28%). Note that the thresholds’ values are relatively
lose to the ones selected for the synthetic populations (6% and
.5%).

As in the previous section, values for the environment were
elected to minimize errors, resulting in values of 0.90 and 1.02.
gain, these values are close to the ones for synthetic populations

0.92 and 1.02). The error was 3.09%, compared to 54.71% if we
sed the same values as in synthetic populations. The results are

nterestingly different from those for synthetic populations. While
he environment was previously as important as social factors, in
he student network social factors are the leading contributors. The
ole impacts on physical activity and diet directly account for two-
hirds of the change (66.14%) whereas the environment directly
ccounts for 9.94 and 6.11% through interactions.

Overall, the student network (i) confirms the bistability of the
ystem, but (ii) appears to be less prone to large changes and (iii)
s less influenced by the environment. This suggests that network
roperties other than being small-world or scale-free play a strong
ole in creating strong populations that are resistant to change and
utside influences.

. Discussion

Previous studies have demonstrated the importance of social
etworks in the context of obesity [33,38].  Mathematical models
ave been used to analyze how social networks may  contribute to
he obesity epidemic [4,25,35]. However, these models considered
hat obesity was spreading directly from person to person, whereas
e know that obesity is the outcome of a long term imbalance in

nergy intake and energy expenditure. In this paper, we  improved
n previous models by taking into consideration the factors that
ontribute to this imbalance: food and physical activity behaviours.
hese factors were incorporated by using approximations of human
etabolism (Fig. 1). By going from obesity spreading directly to a

pread of obesity based on the adoption of behaviours, we  achieve
n increased degree of realism. Furthermore, our mathematical
odel improves the model of Bahr et al. [4],  which assigned to

n individual the majority weight amongst his friends. In our
odel, influences were exerted continuously and were cumula-

ive, causing changes only when a threshold quantity was  received.
his exhibits non-linear dynamics (Fig. 6), which were recently
dvocated to improve the realism of models [34]. However, the
ssumption of thresholds can be questioned, based on two  theories.

Firstly, the metaphor of the “boiled frog” [2] suggests that an
mportant issue with obesity is that its development is so slow
ver time that individuals often do not react. Secondly, the liter-
ture on life events [37] shows that self-motivated changes (i.e.,
nspirational changes) are a minority, and that most behavioral
hanges are undertaken because of rare events which act as exter-
al stimuli. These theories, centered at the level of the individual
ather than the group, highlight that the non-linear dynamics in
besity may  not be due to the presence of thresholds over contin-
ous influences, but to the occurrence of rare events that radically
hange individuals’ behaviours. In a group, it is likely that a combi-
ation of both thresholds and rare events are at work, as individuals
re influenced as well as they can be suddenly inspired for chang-
ng. However, estimates of the contribution of each in regards to

ehavioural changes are currently unknown, and have not been
esearched so far.

Several extensions are possible to improve this model. How-
ver, each comes with its own requirements for data, and numerous
utational Science 3 (2012) 17– 27 25

gaps exist. For example, if the necessary data becomes available,
the model could be extended to take into account how the history
of individuals affects their reactions to socio-environmental influ-
ences. Indeed, individuals tend to return to their highest historical
weight status [3],  but this has not yet been explained in the context
of social networks. The main possible modelling improvement that
could be achieved with currently available data is with respect to
the description of metabolism, as we  considered only an individ-
ual’s weight and not the separation into lean mass and fat mass.
Using such a distinction and the equations from [41,20,10],  we can
more accurately depict the course of individuals, and avoid misclas-
sifying individuals with a large lean mass as being obese. However,
only a minor gain would be expected in the model’s accuracy, since
for the average individual approximately 95% of the energy goes
toward fat mass and 5% toward lean mass [41].

We have illustrated the potential of our model for both synthetic
and real-world populations. Our application was limited by numer-
ous data gaps. Indeed, our model is a better depiction than one
in which body weight itself is “contagious” but as a consequence
applying it requires more data. For example, data on the social facil-
itation of food consumption provided us with an estimate of how
much more individuals eat when with friends: this is the change
due to the social event, but estimating how much influence was
necessary (i.e., threshold values) to create this change remains a
challenge. In this work, we addressed that gap by varying the miss-
ing values and selecting those leading to changes on weight deemed
as reasonable compared to the NLSY79 data.

Our application examined the contribution of environmental
versus social influences with respect to changes in weight. Our
results on synthetic networks exhibiting a strong small-world and
scale-free properties showed that the environment could be as
important as social factors in determining changes in weight. How-
ever, a real-world network provided a different picture. Even if
the system behaves similarly (e.g., first order phase transition),
the contributions of factors are different. In the real-world net-
work, changes are much smaller and less prone to be influenced
by the environment. This leads to two  observations. Firstly, the
environment should not be neglected as it can have a strong inde-
pendent impact and systematically interacts with social influences.
Secondly, and more importantly, micro-level structural proper-
ties, rather than macro-level (small-world, scale-free) can be key
in shaping a cohesive population where environmental influences
matter less.

To go further, it would be of particular interest to investigate
which parts of the environment are more affected by the micro-
level structure of the population. In our model, the environment is a
single variable that abstracts myriad aspects, ranging from the built
environment to the media. A rudimentary attempt in future models
can consist of going from this single variable exerted on all indi-
viduals to a variable that is individual specific. A more ambitious
enterprise is to view the built environment (i.e.,  the man-made
surroundings) also as a network: road segments are connected
when they are reachable from one another, in the same way  as
individuals in a social network are connected when they know
each other. This allows us to extend our mathematical model to
encompass both social network and built environment: individuals
in the social network exert their influences through character-
istics such as physical activity behaviour, and segments of the
built environment also exert an influence through the opportuni-
ties (or the lack thereof) that they provide for exercise. However,
research has already shown that numerous gaps exist in accu-
rately modelling the environment and the social network [16].
For example, we  are aware of general properties regarding the
structure of social networks, but we  do not currently know how

these properties change if only the social contacts living nearby are
modelled.
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. Conclusion

Research has acknowledged the role that social networks play
n the development of obesity [33,38]. However, current models
emain limited to considering obesity as a “contagious” phe-
omenon that can be caught if most social contacts are obese [4].
e  proposed a model that takes into account how individuals

nfluence each other with respect to food and physical activity,
nd how they contribute to weight through approximations of
uman metabolism. Applying this model to synthetic and real-
orld populations showed that the environmental influence is

lso a key component behind changes in weight but its impor-
ance depends on structural properties of the population at the

icro-level rather than the macro-level (e.g., being small-world or
cale-free).
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